Tutorial for AdmixSim
Descriptions
1. Population model assumptions
The population in each generation evolves following standard Wright Fisher model without mutation and selection. That is, randomly sample two individuals from the population, and randomly choose one of the chromosomes in each individual, pair and recombine them to form a new chromosome pair for the next generation. Repeat this process until sampling N chromosome pairs. Here N denotes population size in specific generation.
Recombination is modeled as Poisson Process along the chromosome with rate 1 (Unit in Morgan).
2. AdmixSim description
Here we implemented a very flexible simulator for admixed population, in which:
1) Can take arbitrary number of ancestral populations;
2) Can take arbitrary waves of population admixture;
3) Population size can be changed generation by generation;
4) And admixture proportions can also be changed generation by generation.
Get started
1. Requirements
To run the simulator, java 1.6 or upper is required.
2. Get command line help
java -jar AdmixSim.jar –h or java -jar AdmixSim.jar --help
3. Run it with the toy data
java -jar AdmixSim.jar --gen 10 --nanc 2 --leng 1.0 --file toy.par --samp 20 --input test --output test-out
[bookmark: _GoBack]Explanation: The toy commands simulating an admixed population, which started to admix 10 generation ago (--gen 10) with two ancestral populations (--nanc 2). The chromosome length simulated is 1.0 (--leng 1.0), and the detailed model description is in file toy.par (--file toy.par). At the end of simulation, sample 20 individuals from the admixed population (--samp 20). The prefix of input files (test.hap and test.map) is test (--input test) and the prefix of output files is test-out (--output test-out). Details of each file will be explained in the next section.
Input and output
1. Input files
1). Model description file
Firstly, in model description file, set up the initial number of haplotypes sampled from the ancestral populations.
Secondly, set up the population size and ancestral proportions for each generation in one line.
Note: anything follows "#" is treated as a comment.
Here is a complete example:
#set up number of haplotypes in each ancestral population to be sampled from
10 10
// #indicates start of population size and admixture proportions
100 0.5 0.5 #init population, two ancestral population, each contribute 50%
100 0 0
100 0.1 0 #second wave, with 10% extra gene flow from ancestral population 1
100 0 0
100 0 0
100 0 0.2 #third wave, with 20% gene flow from ancestral population 2
100 0 0
150 0 0 #population increase to 150
100 0 0 #population size decrease to 100
100 0 0
By the same manner, it is quite simple to implemented HI, GA or CGFR or CGFD models as described in Jin Wenfei et al (2012) AJHG.
HI model:
10 10
//
100 0.7 0.3 #init population, two ancestral population, contribute 70% and 30%
100 0 0
......
100 0 0
GA model:
10 10
//
100 0.7 0.3 #init population, two ancestral population, contribute 70% and 30%
100 0.1 0.1
......
100 0.1 0.1
CGFR model:
10 10
//
100 0.7 0.3 #init population, two ancestral population, contribute 70% and 30%
100 0.1 0
......
100 0.1 0
CGFD model:
10 10
//
100 0.7 0.3 #init population, two ancestral population, contribute 70% and 30%
100 0 0.1
......
100 0 0.1
2). Map file
The genetic positions for each marker are given in Morgan, one line per marker.
Here is an example:
0.00097100
0.00238066
0.00367538
......
3). Haplotype file
The haplotypes of ancestral populations are combined in one file, one haplotype per line. The first n1 lines correspond to haplotypes for the first ancestral population, the second n2 lines correspond to haplotypes for the second ancestral population and so on, in which the number of ancestral populations and the numbers of haplotypes for each ancestral population ((n1, n2 and so on) are given in model description file.
Here is an example:
10110000001001000010000000101101000101010000110101110000000000100000
00100000100001000010000000101101010100110000010111110010000000100000
00100000100001000010000000101101010100010100010101110000001000110000
00100000100001000010100000101101010100010000010101110000001000100000
......
01000000000001101000000100000001000100000010000000010100010000100001
Hints: the map file and haplotype file should have the same prefix, for example, test.map and test.hap
2. Output files
1). Admixed haplotypes
Record the haplotypes from the individuals sampled from the admixed population. The format is the same as that of input haplotype file.
2). Segment file
Record the start, end and from which ancestral the segment comes. Each line corresponds to one chromosomal segment.
Here is an example:
 0.00000000 0.07785695 2
 0.07785695 0.30178126 1

 0.30178126 0.41594482 2
Complete arguments list
 -h/--help print help message [optional]
 -f/--file model description file [required]
 -i/--input prefix of input files [required]
 -g/--gen generations since admixture [optional, default: 1]
 -k/--nanc number of ancestral populations [optional, default: 2]
 -l/--leng length of chromosome to be simulated [optional, default: 1.0]
 -n/--samp number of individual(s) to be sampled [optional, default: 10]
 -o/--output prefix of output files [optional, default: output]
 -s/--seed seed of random generator [optional, default: current time]

Easily couple with other simulator
It's very easy to couple with other simulator such as ms. For example, use ms to simulate two ancestral populations, whose Ne remains constant, i.e. Ne=5000, split 4000 generations ago, command as below:
 ms 200 1 -t 2000 -r 2000 10000000 -I 2 100 100 -ej 0.2 2 1 -p 8 > SimAnc.txt
Then just simply convert into the files needed in our simulator:
 python convert.py simAnc.txt simAnc 200
It will produce the map file and the ancestral haplotype file:
 simAnc.map simAnc.hap
Afterwards, the simulated ancestral haplotypes could be used in our simulator, for example:
 java -jar AdmixSim.jar -g 20 -k 2 -l 2 -f sim1.par -n 100 -i simAnc -o sim1

